Properties of neutron star crust within nuclear physics uncertainties

Guilherme Grams Institut de Physique des 2 Infinis de Lyon

In collaboration with R. Somasundaram, J. Margueron and S. Reddy, under the project "Violent phenomena in the Universe".

Presentation to Master Project MAC 28/05/2021

Neutron star structure

Fig. from Arzoumanian et. al. (2009) arXiv:0902.3264

Meta-model within CLDM + finite size terms

Homogeneous matter

4

Homogeneous matter

Homogeneous matter

Finite nuclei in CLDM

$$egin{aligned} &E_{nuc}(A,I,n_{cl}) = E_{bulk}(A,I,n_{cl}) + E_{FS}(A,I,n_{cl,}n_e=0) \ &E_{FS}(A,I,n_{cl}) = E_{coul}(A,I,n_{cl}) + E_{surf}(A,I,n_{cl}) + E_{curv}(A,I,n_{cl}) \end{aligned}$$

Model	Variables	FS1	FS2	FS3	FS4	
Bulk from MM	(I,n_{cl})	×	×	×	×	
FS Surface	(n_{sat})	×	(<u></u>)			
FS Coulomb (Dir.)	(n_{sat})	×	-			
FS Surface	(n_{cl})	5 	×	×	×	
FS Coulomb (Dir.)	(n_{cl})	_	×	×	×	
FS Curvature	(n_{cl})	8	8-30	×	\times	
FS Coulomb (Ex.)	(n_{cl})	· — ·			×	
Number of param.		3	3	5	5	

The surface and curvature contributions:

$$E_{surf}(A, I, n_{cl}) = 4\pi R_{cl}^2 \sigma_{surf}(I)
onumber \ E_{curv}(A, I, n_{cl}) = 8\pi R_{cl} \sigma_{curv}(I)$$

$$egin{aligned} \sigma_{surf}(I) &= \sigma_{surf,sat} rac{2^{p_{surf}+1}+b_{surf}}{Y_p^{-p_{surf}}+b_{surf}+(1-Y_p)^{-p_{surf}}} \ \sigma_{curv}(I) &= \sigma_{curv,sat} rac{\sigma_{surf}(I)}{\sigma_{surf,sat}} lpha \left[eta_{curv} - rac{1-I}{2}
ight] \end{aligned}$$

Cost function for the different models

Residuals for the six Hamiltonians

FS4 model

Inhomogeneous matter

Unified EoS for neutron star

- Crust modeled in a CLDM approach.
- Nuclear interaction given by the meta-model fitted to chiral EFT.

System composed by clusters, free neutrons and electrons.

Equilibrium equations:

1. Virial theorem:

- 2. Mechanical equilibrium:
- 3. Chemical equilibrium:

4. Beta equilibrium:

$$egin{aligned} 2E_{coul} &= E_{surf} + 2E_{curv},\ P_{cl} &= P_{gas},\ \mu^n_{cl} &= \mu^n_{gas}, \end{aligned}$$

$$\mu^n_{cl} = \mu^p_{cl} + \mu_e + \Delta m c^2$$

 $\mu_{gas},$

NS crust properties (SLy4): impact of FS and minimization function

NS crust properties (SLy4): impact of FS and minimization function

Crust core transition density, n_{cc}, for SLy4 in previous works:

- Douchin & Haensel: 0.076 (fm⁻³)
- Carreau *et al.*: 0.073 0.083 (fm⁻³)
- Viñas *et al*.: 0.072 0.09 (fm⁻³)

$1.0~M_{\odot}$	\mathbf{FS}	n_{cc}	$R_{1.0}$	$CT_{1.0}$	$ICT_{1.0}$	$\Lambda_{1.0}$	$I_{\rm crust}/I$	
Model		$10^2~{\rm fm}^{-3}$	(km)	(km)	(km)		%	
$SLy4_{MM}$	FS1	8.00	12.02	1.64	0.81	2189	5.00	
$\rm SLy4_{MM}$	FS2	7.80	12.03	1.64	0.80	2183	4.74	
$\rm SLy4_{\rm MM}$	FS3	7.75	11.99	1.60	0.80	2182	4.91	
$\rm SLy4_{\rm MM}$	FS4	7.95	12.01	1.63	0.81	2198	4.70	13

NS crust properties: impact of Hamiltonians and effective mass

Crust composition: comparison of chiral Hamiltonians with previous works.

Model	n_{cc}	$R_{1.0}$	$CT_{1.0}$	$ICT_{1.0}$	$\Lambda_{1.0}$	$(I_{\rm crust}/I)_{1.0}$	$A_{\rm cl,0.01}$	$\mathrm{Z}_{\mathrm{cl},0.01}$	$n_{ m cl,0.01}$
$1.0 M_{\odot}$	$10^2 \ ({\rm fm}^{-3})$	(km)	(km)	(km)		%			$10^2~{\rm fm}^{-3}$
$\mathrm{H1}_{\mathrm{MM}_{\mathrm{bare}}}^{\mathrm{FS4}}$	9.55 (9.55)	11.53 (11.54)	1.54(1.55)	0.80 (0.80)	1861 (1862)	5.80(5.80)	191 (185)	43 (42)	16.0(16.0)
$\rm H1^{FS4}_{\rm MM_m*}$	9.55(9.60)	11.44 (11.44)	1.51(1.51)	0.77(0.77)	1764 (1764)	5.41(5.47)	207 (201)	46(44)	16.3(16.3)
$\mathrm{H2}_{\mathrm{MM}_{\mathrm{bare}}}^{\mathrm{FS4}}$	9.25 (9.10)	11.72(11.72)	1.62(1.61)	0.84(0.83)	2012 (2002)	5.99(5.81)	157(160)	38 (39)	15.3(15.3)
$\rm H2^{FS4}_{\rm MM_m*}$	$9.25\ (9.15)$	$11.63\ (11.63)$	1.58(1.58)	0.82(0.81)	$1955\ (1947)$	5.80(5.71)	170(167)	41 (40)	15.5(16.5)
$\rm H3^{FS4}_{\rm MM_{bare}}$	8.45 (8.35)	$12.14\ (12.13)$	1.69(1.68)	0.85(0.84)	2392 (2395)	5.75(5.62)	139(149)	34 (36)	14.6(14.6)
$\rm H3^{FS4}_{\rm MM_{m}*}$	8.40 (8.30)	$12.05\ (12.04)$	$1.65\ (1.63)$	$0.82\ (0.81)$	2263 (2263)	5.59(5.46)	$146\ (155)$	36(37)	14.9(15.0)
$\rm H4^{FS4}_{\rm MM_{bare}}$	9.00(8.85)	11.88 (11.87)	1.68(1.66)	0.86(0.85)	2093 (2084)	6.00(5.82)	122 (135)	31 (34)	14.8(14.8)
$\rm H4^{FS4}_{MM_{m}*}$	9.05 (8.90)	11.80 (11.78)	1.65(1.63)	0.84(0.84)	2176 (2051)	5.96(5.83)	131 (144)	33 (35)	15.0(15.0)

 $\Delta_E(\Delta_{E/A})$

NS crust properties (H2 and H3): impact of surface parameter p_{surf}

Neutron star mass and radius

18

SUMMARY

- We adjusted the nucleon meta-model to chiral Hamiltonians.
- We introduced four ordered finite size models in the CLDM.
- Confronted the CLDM to experimental nuclear masses.
- Predicted NS crust properties.

Finite nuclei

- A conservative upper band to the energy density ~ -2.2 MeV.fm⁻³.
- Select four, out of six, Hamiltonians H1-H4. Where the best two are H2 and H3.
- Identified a model dependence on the correlation between the surface parameters and Esym.

Neutron star crust

- The two Hamiltonians, H5 and H7, excluded in the finite nuclei study, predict A and Z far from the convergence values of the others.
- All models show R_{1.4} ~ 12 km, in the lower band of NICER and upper band of Capano *et al*.
- Compared to previous works we reduce the uncertainties on the crust composition.